Equine nutrition

Nutrient sources

Dr Jo-Anne Murray

(PhD, MSc, PgDip, PgCert, BSc (hons), BHSII, RNutr) Senior lecturer in animal husbandry and nutrition

Learning Outcomes

By the end of this section you should be able to:

Recognise and critically appraise nutrient sources for horses and ponies

Content

- Forages
- Cereal grains
- Cereal by-products
- Fibrous by-products
- Oil and oil by-products

Forage

- Entire diet for equids in wild and many domesticated horses
- Grazed directly (fresh) or conserved

Fresh forage

- Natural environment for horse = grazing on fresh pasture
- Many domesticated horses still spend 个 time at pasture
- Some competition horses spend much ↓
- Natural diet = low quality herbage
- Domesticated horse = improved pastures (个 nutritive value)

Grasslands

Chemical composition:

- Extremely variable
- CP = 3 to 30 %
- CF = 20 to 40 %
- WSC = 3 to 40 %
- Lipid= 1.5 to 3.5 % (unsaturated)
- Ash = 4 to 8 %
- DE (energy) = 7.5 to 12 MJ/kg DM (depending on time of year)
- DE of legumes \uparrow = 10 to 12 MJ/kg DM
- Minerals = \(\gamma\) in pastures containing legumes

The amount of nutrition grass can provide depends on:

- Time of year
- Environment
- General management of the pasture
- Number of animals grazing the area

Time of year:

- Rapid in spring and early summer
- Often more produced than animals can eat
- Grazing pasture often cropped for conservation in spring
- Used for grazing in summer
- Less growth in autumn
- Very little growth in winter
- Ground damage in winter
- Thus animals housed and fed conserved forages
 - Hay
 - Silage
 - Haylage
 - High-temperature dried

Nutritive value

Dependent on:

- Stage of growth:
 - Most important factor in nutritive value of grass
- Plant species
- Soil type
 - Grass responds well to soil with ↑ fertility
 - Soil type can limit plant growth and nutrient content
- Environmental conditions
 - Temperature
 - Light
 - Rainfall

Nutritional intakes

- Nutritional quality and growth ↑ in spring and summer
- Difficult to estimate amount of grass eaten
- Most horses/ponies will eat ~ 2 % of BW per day
- In spring/summer can = too much grass can be consumed
 - 1 acres will feed 3 to 4 horses
- Excess grass = conserved for winter feeding
- Intakes lower in winter
 - 1 acres will feed 1 horse or 2 ponies

Requirement for conserved forage

- Seasonal growth = need to conserve for winter feeding
- Thus provides forage when demand exceeds supply
- Some horses stabled year round
- Grassland management tool
 - Grazing exceeds grazing needs

Objectives of forage conservation

- Preserve a product with ↑ digestible nutrients
 - Quality of preservation key to:
 - Palatability
 - Longevity
 - Nutritional quality
 - Hygienic quality

Methods of forage conservation

- By removing the moisture for aerobic storage
 - Dried in field, or barn, or part both
 - Haymaking and artificial dehydration
- By acidification in an anaerobic environment
 - Fermentation and storage of moist crop
 - Silage/haylage making

Conserved forage - Hay

- Plant materials dried to ~ 15 % moisture content
- Usually field dried = ↑ weather dependent
- Cut at late stage of maturity
- Stable at ambient conditions
- Changes during storage
- UK = grass hay

Conserved forage - Hay

- Variable quality
 - Nutritionally
 - Hygienically
- Low energy (DE = 4 to 8 MJ/kg)
- Dust (RAO)
- Soak (10 mins) or steam

Conserved forage - Hay

- North America = lucerne (alfalfa)
- UK too wet
- Higher protein
- Higher energy (DE = ~ 10 MJ/kg)
- UK = conserved by HT drying

Conserved forage – HT forages

- Dried at very high temperatures
 - Efficient, but very expensive
- Young forage = ↑ digestibility
 - Drying has little effect on nutritional quality
- Used as a short chop added to bucket feed

Conserved forage – HT forages

- Lucerne (alfalfa)
 - DE = 10 MJ/Kg DM
- Grass (readigrass)
 - No data in horses
- Alfalfa/straw mix
 - Lower energy

Conserved forage – haylage and silage

Fermentation of low DM crop

↑ Moisture herbage

- Difference b/w haylage and silage = DM content
- Generally made from grass
 - Legumes (e.g. lucerne)
- Cut, wilted, ensiled

Conserved forage – haylage

Haylage

- Typically grass haylage
- Popular feed for horses
- − ↑ DE than hay
- Low dust
- Palatable
- \downarrow need for cereals
- → aerobic stability

Conserved forage – silage

- Silage
- Clamp or big bale (clamp not usually fed to horses)
- Perceived as high risk
 - Acidity (no diff in faecal pH of horses fed silage compared to hay)
 - Laxative effect (only small diff in faecal DM)
 - Hygienic quality (can contain *Listeria spp.* or *Clostridium botulinum*)
 - Hygienic quality important horse can't metabolise certain toxins
 - Haylage contains less moisture for microbial growth

Cereal grains

Nutritional value:

- CP: 80 120 g/kg DM
- Low in protein quality (↓ essential aa)
- Lipids: 10 60 g/kg DM (unsaturated)
- \downarrow calcium (<1 g/kg DM)
- − ↑ phosphorus (3-5 g/kg DM)
- Poor Ca:P ratio
- \uparrow energy (starch) DE 12 16 MJ/kg
- Less variable than forage

Cereal grains

- Commonly utilised grains:
 - Oats (40 % starch, fibre content [hull] naked oats those with no hull)
 - Barley (55 % starch, ↑ energy value)
 - Maize (70 % starch, need to be processed)

Other grains

- Wheat
- Rye
- Sorghum
- Triticale

Oats

- ~ 40 % starch
- Fibre content hull
- Naked oats no hull

Barley

- ~ 55 % starch
- ↑ energy than oats

Maize

- ~ 70 % starch
- ↑ energy than oats and barley
- Needs to be processed

Botanical source of starch

- No effect on TT digestibility = ~ completely digested
- SI digestibility is affected

Botanical source of starch

Cereal processing

- Improves availability of nutrients
- Simple mechanical processing:
 - Rolling
 - Grinding
- More sophisticated techniques:
 - Micronisation (heat and mechanical pressure infrared technology)
 - Extrusion (high temperature steam then rolled into a flake)

Cereal processing

Cereals need to be processed for horses

Improves SI digestibility

- Prevents grains passing to LI
 - = disturbance

Processing of cereals

Starch intakes

McLean et al. (2000): > 2 g/kg LW per meal

500 kg horse - 0.5 kg starch/meal No more than 1.2 kg oats per meal $(1.2 \text{ kg} \times 40 \text{ % starch} = 0.48 \text{ kg})$

Vervuet et al. (2009): > 1 g/kg LW per meal

Cereal grains - overview

- Energy-dense feedstuffs
- Consistent nutritive value
- Starch = okay for horses in fast work
- Needs to be processed
- Fed in moderation & small, frequent meals
- Utilise ↑ energy fibrous feeds

Cereal by-products

- Wheatbran major milling product fed in UK
 - Arising from milling of cereal grains
- Nutritional value = poor
 - − ↑ levels of lignin
 - \downarrow Ca and \uparrow P (poor ratio)
- ↑ H₂O holding capacity
- Good vehicle for administering medicine
- Palatable = good appetite stimulant

Fibrous by-products

- Sugar beet pulp commonly fed to horses
 - Soaked to prevent choke and stomach distension
- Residue after extraction of sucrose
 - Dried
 - Shredded or pelleted
 - +/- molasses
- Nutritional value
 - − ↑ fibre content ; ↑ fibre digestibility
 - Moderate CP content
 - − ↑ Ca content

Fibrous by-products

- Sugar beet pulp very good cereal replacer
 - Uniform composition
 - More favourable Ca content
 - — ↓ risk of LI disturbances
 - − ↑ DM digestibility (~ 85 %)
 - DE of almost 13 MJ/kg DM

Uses

- Found in compound mixes
- Added to bucket feed
- Generally valued and under used

Molasses

- Residue following sugar extraction from the sugar beet root
- Thick residue after sugar separated from water extract
 - − ↑ soluble sugars
 - Often added to sugar beet pulp
 - And proprietary mixes, mineral "licks"

Nutritional value

- DE = ~ 11 MJ/kg
- CP = 50 g/kg
- − ↑ CHO content

Oil and oil by-products

- Vegetable oils most commonly fed to horses
 - Corn oil (most palatable)
 - Soy oil
 - Sunflower oil
 - Rapeseed oil
 - Linseed oil
- Fish oils (particularly cod liver oil)
- Most oils have energy content = 9 Mcal/kg
- 2.25 x more than CHO

Oil and oil by-products

- Use of oil in horse rations
 - Mainly to ↑ energy content of the ration
- Other benefits seen
 - Improved energetic efficiency
 - Improved athletic performance
 - Enhanced body condition
 - Less excitable behaviour
 - Improved health

Oil and oil by-products

- Oil by-products
 - Seeds grown for ↑oil content oil extracted
 - Residue remaining = oil seed meal
- Oil seed meal
 - − ↑ protein
 - Generally used as protein supplement
 - Some oil content (1-1.5 % solvent or 4 5 % mechanical)
- Types (↑ quality protein ↑ lysine)
 - Soybean meal
 - Linseed meal
 - Hempseed meal

Nutrient sources - conclusion

- Feed high quality forage
- Use high degradable fibrous feeds
- Feed cereals in moderation

 and
- ONLY as supplement to a fibre-based diet

Thank you for participating in the course ©