Equine nutrition

Nutrient digestion

Dr Jo-Anne Murray

(PhD, PgDip, PgCert, BSc (hons), BHSII, RNutr) Senior lecturer in animal husbandry and nutrition

Learning Outcomes

By the end of this section you should be able to:

 Discuss the digestive physiology of the equine gastrointestinal tract and appraise its limitations in relation to nutrient digestion.

Content

- Overview of nutrients in food
- Nutrient digestion
 - Water
 - Carbohydrate
 - Protein
 - Fats and oils
 - Vitamins
 - Minerals

What is in food?

General constituents of food:

Water

- Essential component of the diet
- Water required for:
 - Transport of nutrients around the body
 - Thermoregulation
 - Metabolism
 - Excretion of waste products
 - Gut function
- 80 % of foal's BW = water
- 65 75 % of mature horse

Water

- Water requirements depend on:
 - Age
 - Level of exercise
 - Type of feed (horses drink \downarrow on \uparrow moisture diets)
 - Environmental conditions (e.g. temperature and humidity)

Water in food:

- Referred to as moisture content
- Many horse feeds have ↑ moisture content
- Dry matter (DM) calculated to compare nutrients

Carbohydrate (CHO)

- Collective name for
 - Starches
 - Sugars
 - Dietary fibre
- CHO definitions
 - Structural (fibre)
 - Non-structural (sugar, starch and fructan)
- CHO 1° required for energy

Structural CHO

- Components constitute fibrous fraction of plant
 - Structural role in plants (hence name structural CHO)
 - Dietary fibre
 - Major energy source to horses
- Cell wall components
 - Cellulose
 - Hemicellulose
 - Pectin
 - Lignin

Structural CHO

- Degraded by microbes in LI
 - VFA
 - Gases
 - Not digested in SI
- Feeds high in fibre
 - Grass
 - Hay
 - Straw
 - Sugar beet pulp

Lignin

- Lignin is non-CHO monomer
- Closely associated with NSP fraction
- Negatively correlated to digestibility
 - Gives plant strength but highly resistant to chemical and microbial degradation
 - Also some plant CHO & proteins "bound" to lignin = \downarrow their digestibility
- Lignin content ↑ with maturity
- Mature plants, hay and straw rich in lignin

Structural CHO – Stage of maturity

- 1º factor in nutritive value of forages
- ↑ maturity = ↑ structural material (i.e. stem)
- Result = ↓ nutritive value

Fibre analysis

- Acid detergent fibre (ADF)
 - Measures cellulose and lignin

- Neutral detergent fibre (NDF)
 - Total cell wall (including ADF fraction)

Non-structural CHO

- Associated with cell contents
- Components constitute storage CHO of plant
- Storage CHO of forage crops:
 - Fructan
 - Starch

Non-structural CHO - Fructan

- Major storage CHO of grasses
- Lactated primarily in the stem
- Polymers of fructose
- Soluble in H₂O
- Digestion:
 - Fermented in LI
 - Horse has no enzymes in SI to break down fructose
 - Large intakes of fructan can = digestive upset (laminitis)

Non-structural CHO – WSC fraction

- Grasses also store simple sugars
 - Glucose
 - Fructose
 - sucrose

• Fructan + simple sugars = Water soluble CHO (WSC) fraction

WSC content of grass = ↑ variable

Season

- Early spring: ↑ growth = ↓ WSC

- Late spring/summer = \downarrow growth = \uparrow WSC

Year effects

Studies reported highest incidence of laminitis in May

WSC content of grass = ↑ variable

Time of day

- Balance b/w photosynthetic activity & utilisation
- Affected by light & temperature
- ↑ during the day
- Peaks late afternoon/early evening
- Decline during hours of darkness

WSC - Factors affecting accumulation

- Environmental & management factors
 - Temp: ↓ temp = ↑ WSC
 - − Light intensity: ↑ light = ↑ WSC
 - Water stress: ↓ water = ↑ WSC
 - Fertiliser application: ↑ fertiliser = ↓ WSC
 - Cutting/mowing: ↑ cutting/topping = ↓ WSC

Starch

- Major source of NSC found in many plants
 - Cereal grains
 - forage legumes
 - roots & tubers
 - Leaves and stems of grass

Non-structural CHO - Starch

- Starch content varies with plant species
 - Very low in leaves and stems of grasses
 - Forage legumes = 5 % of DM
 - Cereal grains = 40 70 % of DM

Photo courtesy of Dengie Crops Ltd.

Non-structural CHO - Starch

• Digestion

- Broken down in SI
- Amylases break starch down to simple sugars
- Horse can digest limited amounts of starch in SI
- Excess travel to LI = causing disturbance

Fats and oil

- Horse diets typically ↓ in fats & oils
- Fats & oils are digested in SI by lipases
- Horse don't require

 levels of fat & oils in their diet
- Can add fats & oils to diet to ↑ energy content
- 2 x energy of CHO

- Required for various functions
 - Structural (e.g. muscle, skin, hair)
 - Enzymes (catalysts that affect the rate of reactions in the body)
 - Hormones (chemical messengers that regulate metabolic processes)
 - Immune compounds (for fighting infection)
 - Transport compounds (e.g. transport of nutrients)
- Consists of chains of amino acids
- Essential and non-essential amino acids

- Non-essential: synthesised by the animal
- Essential (need to be supplied in the diet)
 - Lysine (first limiting: present in the least amount relative to requirement)
 - Methionine
 - Threonine
 - Isoleucine
 - Valine
 - Arginine
 - Tryptophan
 - Histidine
 - Phenylalanine

- Protein breakdown begins in the stomach
 - Acidity denatures the proteins
 - Pepsin partially degrades proteins into smaller peptides
 - No protein absorption in the stomach
- Further broken down in SI
 - Proteases break down proteins to aa
 - Absorbed across SI gut wall
- Protein associated with the plant cell wall fermented in LI

- Protein digested in SI used by the horse
- No aa absorption in Ll
- Microbes in LI degrade protein
 - Used for microbial growth
 - No biological value to horse

Minerals

- Required for various functions:
 - Growth
 - Co-factors to enzymes
 - Involved in transport of energy
- Mineral digestion:
 - Majority absorbed in SI
 - Majority of P absorbed in LI

Minerals

- Two categories of minerals:
 - Macro-minerals
 - Trace-miners
- Macro-minerals:
 - Required in relatively large quantities (g/day)
- Micro-minerals:
 - Needed in very small quantities (mg/day)
- Amounts important also ratios of minerals (e.g. ca:p)

Minerals

- Two categories of minerals:
- Macro-minerals:
 - Required in g/day
 - Calcium (Ca)
 - Phosphorus (P)
 - Sodium (Na)
 - Potassium (K)
 - Magnesium (Mg)
 - Sulphur (S)
 - Chloride (CI)

Micro-minerals:

- Required in mg/dag
- Cobalt (Co)
- Copper (Cu)
- Molybdenum (Mo)
- Zinc (Zn)
- Maganese (Mn)
- Iron (Fe)
- Floride (F)
- lodine (I)
- Selenium (Se)
- Chromium (Cr)
- Amounts important also ratios of minerals (e.g. ca:p)

Vitamins

- Required in small amounts but vital for many bodily functions
 - Vision, immunity, growth, bone development, blood clotting etc etc
- Two categories:
 - Fat soluble (A,E,D,K)
 - Fat soluble = associate with fat to be absorbed & transported in blood
 - Water soluble (C, B complex) dissolve easily in water
- Water soluble vitamins not stored
 - B vits need to be supplied regularly
 - B vits produced by microbial synthesis in LI
 - But disruption to LI environment (e.g. ↑ starch diets) can affect this
 - Vit C synthesised in the liver

Questions?