Equine nutrition

Digestive tract

Dr Jo-Anne Murray

(PhD, PgDip, PgCert, BSc (hons), BHSII, RNutr) Senior lecturer in animal husbandry and nutrition

Learning Outcomes

By the end of this section you will be able to:

• Describe the anatomy of the gastrointestinal tract of the horse

Content

- Overview
- The mouth
- The stomach
- The small intestine
- The large intestine

Natural environment of horse

- Roam over 8 to 26 km/day (nomadic animals)
- Graze little and often
 - Grazing 16 to 20 hours/day
 - Low quality feeds, high in fibre

Natural environment of horse

- Highly social animals (个 survival)
- Communicate 1° by body language
- Prey animals (fight of flight) hide or run

Diet

- Intestinal system designed to process:
 - \uparrow amounts of \downarrow quality forage
 - Ingested on almost continual basis
- So principle diet should be forage

Departure from natural state

Continually grazing and moving

Not voluntarily confine

Changed use

- Mechanisation of agriculture:
 - Working animal to leisure or sports horse
- Types of feedstuffs changed
 - Include energy dense feeds cereal grains
 - Meet energy requirements of sports horse

Changed feeding management

- Meal feeding:
 - Large meals of cereal grain x 2 daily
- Grain supplementation 个than forage
 - Often less than recommended
 - Minimum 1 kg DM forage/ 100 kg LW
- Whilst intestinal system remains largely unmodified

Encountered some problems

• Health implications:

- Gastric ulceration
- Hind-gut acidosis
- Azoturia
- Laminitis
- Colic

Outcomes:

- Poor performance
- Irreparable damage
- Euthanasia

What can we do?

- Consider digestive anatomy and physiology
 - Maintain gut health
- Understand behavioural needs
 - Maintain good welfare
- Develop dietary management regimes that avoid or even overcome diet-related problems

GIT – as a whole

- Horse classified anatomically as non-ruminant herbivore
 - Non-ruminants = enzymatic digestion (limited fibre degradation in LI)
 - Ruminant = fibre digestion in the rumen
 - Horse = sit between these
- Git begins at lips and ends at anus
- GIT consists of 3 functional regions
 - Stomach Foregut
 - Small intestine
 - Large intestine (hindgut)

GIT – as a whole

Consists of:

- Mouth
- Pharynx
- Oesophagus
- Stomach
- Small intestine
- Caecum
- Large colon
- Small colon
- Rectum

Associated organs:

- Teeth
- Tongue
- Salivary glands
- Liver
- Pancreas

~ 100 feet long in mature horse Changes in diameter at various section Lined with mucous membranes

The mouth

- Digestion begins in the mouth
- Upper lip guides food into the mouth
- Feed torn by upper and lower incisors (in case of grass)
- Molars and premolars grind the forage – ↓ particle size

- Chewing = essential for digestion (regular dental checks important)
- Horse chews 70 90 times/minute (saliva produced in response to chewing)

The stomach

- Size relatively small and inelastic
 - Capacity of ~ 8 litres (~ size of a rugby ball)
 - Important not to over fill (no more than 2 kg per meal)
 - Reason why we feed little and often
- Divided into 2 sections (non-glandular and glandular)
 - Non-glandular section is where food enters (no mucous layer)
 - Glandular is where hydrochloric acid is produced (protected by mucous layer)
- Acidic pH ~ 1.5 to 2 in the glandular region
- Little digestion of feed some protein break down (no absorption)
- Rate of passage rapid (~ 20 minutes)

The small intestine

- Size a 21 to 25 m long narrow tube
 - ~ 30 % of horse's GIT volume (75 % of its length)
 - Joins the stomach to the large intestine

- Duodenum (first part after the stomach) mixing and neutralising
- Jejenum
- Ileum (last part before the LI) absorption of nutrients
- pH of digesta entering the SI ranges from 2.5 to 3.5
- Bile (secreted from the liver) buffer the pH to approx. 7 to 7.5 (no gall bladder)
- Brunner's glands secrete bicarbonate into the lumen further neutralise digesta

The small intestine

- Neutral pH required for:
 - Transport of nutrients across gut wall
 - Optimal activity of enzymes (amylases, lipases etc)
- Surface area increased by:
 - Villi (0.5 to 1 mm long)
 - Crypts (covered by columnar epithelium)
 - Crypts secrete enzymes and mucus to cover intestinal surface
- Absorption greatest in proximal jejenum
- Rate of passage between 45 mins and two hours
 - Depends on diet, type of food, meal size, and amount of forage in the diet
- Digesta moves at 30cm/min via peristalsis (muscular contractions)

The large intestine (also known as the hindgut)

- Size approx. 7 metres long (capacity ~ 150 litres)
 - ~ 60 % of horse's GIT volume
- Three main parts
 - Caecum (first part after the ileum)
 - Large colon
 - Small colon
 - Rectum

- Large intestine lined with mucus-secreting glands no digestive enzymes
- Digestion & absorption in LI depends on microbial fermentation feed residues from SI

The large intestine (also known as the hindgut)

- Caecum 1.2 metres long (capacity of ~ 30 litres)
 - ~ 15 % of horse's GIT volume
 - Large blind-ended sack-like structure
 - Digesta enters LI through ileo-caecal valve; leaves through the caeco-colic valve (both at top)
 - Large fermentation vat (similar to the rumen of the cow)
- Large colon 3 to 3.5 metres long (capacity of ~ 90 litres)
 - Right and left ventral colon
 - Left and right dorsal colon
 - Four parts connected by bends known as flexures (often sites of impactions)

• Small colon

- Same length as large colon
- Smaller diameter
- Main function = absorb water

The large intestine (also known as the hindgut)

- Horses do not produce enzymes to digest fibre
- Microbes ferment digest produce end products:
 - Volatile fatty acids (VFA) = acetate, butyrate and propionate
 - Gases = carbon dioxide (CO_2) and methane (CH_4)
- Microbes over 400 species (probably more)
 - Bacteria (10⁹/ml)
 - Fungi (10³/ml)
 - Protozoa(10⁴/ml)

- pH of LI = 6 to 7 (very important to maintain correct pH)
 - Bicarbonate and phosphate salts secreted
 - Rapid absorption of VFA

The large intestine (also known as the hindgut)

- Microbes need time to adapt to any changes in diet
- Abrupt changes:
 - Reduced diet digestibility
 - Colic
 - Acidosis
- Hindgut designed to process fibre
- Problems occurs when low fibre diets are fed
- Particularly when high levels of starch are included in diet

The large intestine

- High amount of starch and sugars in LI
 - Undesirable
- Rapidly fermented:
 - − ↑ levels of VFA
 - Lactic acid produced
 - → pH
- Adverse affect on LI environment
 - Death of fibre degrading bacteria
 - Colic
 - Acidosis/laminitis

The GIT - conclusion

- Designed to process fibrous feeds
- Fibrous feeds required for
 - Healthy gut
 - Satisfy behavioural needs

- Git disturbance
- Reduced diet digestibility
- Ill health

Thank you for listening